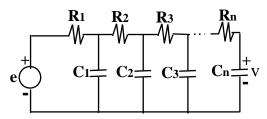
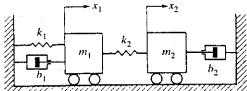
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

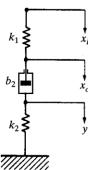


ECEN/MAE 3723 Systems I Fall 2006 Midterm Exam #2 November 21, 2006

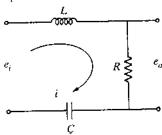


1)	; 2)	; 3)	; 4)	;
Name : _				
Student ID:				

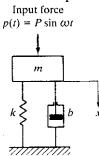
Problem 1: Derive the transfer function V(s)/E(s) for the given RC ladder circuit given below where e is the input source and V is the output response (note $R_1 \neq R_2 \neq \cdots \neq R_n$ and $C_1 \neq C_2 \neq \cdots \neq C_n$)..


<u>Problem 2</u>: Obtain an *analogous* electrical circuits (using force-current analogy) for the mechanical system shown below.

Problem 3: Derive the transfer function $\frac{X_o(s)}{X_i(s)}$ of the mechanical system shown below. Then


obtain he response $x_o(t)$ when the input $x_i(t)$ is a pulse signal given by

$$x_i(t) = \begin{cases} X_i, & 0 < t < t_1 \\ 0, & \text{elsewhere} \end{cases}$$
. Assume that $x_o(0-) = 0$.


Problem 4: Consider the electrical circuits shown below. Assume that the input is sinusoidal, $e_i(t) = E_i \cos \omega t$,

what is the steady state current i(t)? Please derive the formula for steady state response when the system is subject to an input of $E_i \cos \omega t$.

Problem 5: Consider the mechanical vibratory system shown below. Assume that displacement x is measured from the equilibrium position in the absence of the sinusoidal excitation force. The initial conditions are x(0) = 0 and $\dot{x}(0) = 0$, and the input force

 $p(t) = P \sin \omega t$ is given at t = 0. The numerical values are given as m = 2 kg, b = 24 N-s/m, k = 200 N/m, P = 5 N and $\omega = 6$ rad/s. Obtain the complete solution x(t).

